Machine vision system based on a coupled image segmentation algorithm for surface-defect detection of a Si 3 N 4 bearing roller
Defect detection is a critical way to ensure quality for silicon-nitride-bearing rollers. To improve detection efficiency and precision for silicon-nitride-bearing roller surface defects, in this paper, a novel machine vision system for the detection of its surface defects is designed. This method c...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2022-04, Vol.39 (4), p.571 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Defect detection is a critical way to ensure quality for silicon-nitride-bearing rollers. To improve detection efficiency and precision for silicon-nitride-bearing roller surface defects, in this paper, a novel machine vision system for the detection of its surface defects is designed. This method combines image segmentation and wavelet fusion to extract features from an image. In turn, the features are used in a classifier based on the
-nearest neighbor for defect classification. The optimized image segmentation algorithm that is combined with wavelet fusion is the innovation of the proposed method. It is evaluated using different defect images acquired by the machine vision system. Our experiments show that the proposed machine vision system's precision in anomaly detection of the silicon-nitride-bearing roller surface can achieve 98.5%; further, its classification precision of various defects is greater than 91.5%. It has resulted in a solution for the automatic identification of the silicon-nitride-bearing roller surface defects. |
---|---|
ISSN: | 1084-7529 1520-8532 |
DOI: | 10.1364/JOSAA.449088 |