Detection of mercuric chloride by photofragment emission using a frequency-converted fiber amplifier
A real-time, noninvasive approach for detecting trace amounts of vapor-phase mercuric chloride (HgCl(2)) in combustion flue gas is demonstrated using a near-infrared pulsed fiber amplifier that is frequency converted to the ultraviolet. Excitation of the HgCl(2) ([see text]) transition at 213 nm gen...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2007-07, Vol.46 (19), p.4008 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A real-time, noninvasive approach for detecting trace amounts of vapor-phase mercuric chloride (HgCl(2)) in combustion flue gas is demonstrated using a near-infrared pulsed fiber amplifier that is frequency converted to the ultraviolet. Excitation of the HgCl(2) ([see text]) transition at 213 nm generates 253.7 nm emission from the Hg (6(3)P(1)) photoproduct that is proportional to the concentration of HgCl(2). A measured quadratic dependence of the HgCl(2) photofragment emission (PFE) signal on the laser irradiance indicates that the photodissociation process involves two-photon excitation. Additionally, low concentrations of HgCl(2) are detected with the PFE approach in an environment characteristic of coal-fired power-plant flue gas using this compact solid-state laser source. A detection limit of 0.7 ppb is extrapolated from these results. |
---|---|
ISSN: | 1559-128X 0003-6935 1539-4522 |
DOI: | 10.1364/AO.46.004008 |