Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines

Soit~$a$ un entier non nul. Si~$a$ n'est pas de la forme $9n\pm 4$ pour un $n \in {\bf Z}$, il n'y a pas d'obstruction de Brauer-Manin \`a l'existence d'une solution de l'\'equation $x^3+y^3+z^3=a$ en entiers $x, y, z \in{\bf Z}$. D'autre part, il n'y a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2012-10, Vol.134 (5), p.1303-1327
Hauptverfasser: Colliot-Thélène, Jean-Louis, Wittenberg, Olivier
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soit~$a$ un entier non nul. Si~$a$ n'est pas de la forme $9n\pm 4$ pour un $n \in {\bf Z}$, il n'y a pas d'obstruction de Brauer-Manin \`a l'existence d'une solution de l'\'equation $x^3+y^3+z^3=a$ en entiers $x, y, z \in{\bf Z}$. D'autre part, il n'y a pas d'obstruction de Brauer-Manin \`a l'existence d'une solution de l'\'equation $x^3+y^3+2z^3=a$ en entiers $x, y, z \in {\bf Z}$.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2012.0036