Adsorption of cationic dye onto Moroccan natural rock
This paper evaluates the ability of a natural rock found in Morocco to remove the pollutant properties of methylene blue (MB) dye. In this regard, the experiments were conceived to test the hypothesis that the rock native of the country’s region of Khenifra can be used as a new abundant adsorbent to...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of chemistry 2019-08, Vol.9 (1), p.37-44 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper evaluates the ability of a natural rock found in Morocco to remove the pollutant properties of methylene blue (MB) dye. In this regard, the experiments were conceived to test the hypothesis that the rock native of the country’s region of Khenifra can be used as a new abundant adsorbent to remove cationic dyes from water through the adsorption technique in order to avoid extra cost and contribute to the valorization of this material. For this, several factors such as pH of the solution, granulometry, mass of adsorbent, initial dye concentration and stirring rate were tested. The adsorption kinetics process was tested through three models, namely, the pseudo-first-order model, pseudo-second-order model and the intraparticle diffusion model, to predict which type of adsorption is best suited in the removal of dye pollution. The batch study proves that only the granulometry (G ≤ 63µm = 91%, G ≤ 80µm = 88.4% and G ≤ 100µm=70.7%) and the adsorbent mass (the more the mass of the adsorbent increases the more the elimination is achieved) can influence the elimination rate of our rock. Meanwhile, the data of the adsorption kinetics test show that the experimental adsorption could be described by the mechanism of the pseudo-second-order model (correlation coefficients near the unit ‘R 2 = 0.99’ ), confirming chemical sorption as a rate-limiting step of the intraparticle diffusion mechanism. According to the results of this study, the rock collected from the area of Khenifra can be used as a new and efficient adsorbent in the field of wastewater treatment. |
---|---|
ISSN: | 2028-3997 2028-3997 |
DOI: | 10.13171/mjc91190813215aa |