Binary vertex labelings of graphs and digraphs
A (0; 1)-labeling of a set is said to be friendly if the number of elements of the set labeled 0 and the number labeled 1 differ by at most 1. Let g be a labeling of the edge set of a graph that is induced by a labeling f of the vertex set. If both g and f are friendly then f is said to be a cordial...
Gespeichert in:
Veröffentlicht in: | Journal of algebra combinatorics discrete structures and applications 2024-11, p.1-17 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A (0; 1)-labeling of a set is said to be friendly if the number of elements of the set labeled 0 and the number labeled 1 differ by at most 1. Let g be a labeling of the edge set of a graph that is induced by a labeling f of the vertex set. If both g and f are friendly then f is said to be a cordial labeling of the graph. This concept extended to directed graphs is called (2; 3)-cordiality of digraphs. We investigate the labelings that are both cordial for a graph and (2; 3)-cordial for an orientation of it. We also consider the same problem for other known binary vertex labelings of graphs. |
---|---|
ISSN: | 2148-838X 2148-838X |
DOI: | 10.13069/jacodesmath.v12i1.305 |