The allow sequence of distinct eigenvalues for a sign pattern
A sign pattern $\mathcal{A}$ is a matrix with entries in $\{+,-,0\}$. This article introduces the allow sequence of distinct eigenvalues for an $n\times n$ sign pattern $\mathcal{A}$, defined as $q_{\rm seq}(\mathcal{A})=\langle q_1,\ldots,q_n\rangle$, with $q_k=1$ if there exists a real matrix with...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of linear algebra 2024-01, Vol.40, p.48-80 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A sign pattern $\mathcal{A}$ is a matrix with entries in $\{+,-,0\}$. This article introduces the allow sequence of distinct eigenvalues for an $n\times n$ sign pattern $\mathcal{A}$, defined as $q_{\rm seq}(\mathcal{A})=\langle q_1,\ldots,q_n\rangle$, with $q_k=1$ if there exists a real matrix with exactly $k$ distinct eigenvalues having pattern $\mathcal{A}$, and $q_k=0$ otherwise. For example, $q_{\rm seq}(\mathcal{A})=\langle 0,\ldots,0,1\rangle$ is equivalent to $\mathcal{A}$ requiring all distinct eigenvalues, while $q_{\rm seq}(\mathcal{A})=\langle 1,0,\ldots,0\rangle$ is equivalent to the digraph of $\mathcal{A}$ being acyclic. Relationships between the allow sequence for $\mathcal{A}$ and composite cycles of the digraph of $\mathcal{A}$ are explored to identify zeros in the sequence, while methods based on Jacobian matrices are developed to identify ones in the sequence. When $\mathcal{A}$ is an $n\times n$ irreducible sign pattern, the possible sequences for $q_{\rm seq}(\mathcal{A})$ are completely determined when $n\leq 4$ and when the sequence has at least $n-4$ trailing zeros for $n\geq 5$. |
---|---|
ISSN: | 1081-3810 1081-3810 |
DOI: | 10.13001/ela.2024.7779 |