On positive and positive partial transpose matrices

A block matrix $\left[ \begin{smallmatrix}A & X \\{{X}^{*}} & B \\\end{smallmatrix} \right]$ is positive partial transpose (PPT) if both $\left[ \begin{smallmatrix}A & X \\{{X}^{*}} & B \\\end{smallmatrix} \right]$ and $\left[ \begin{smallmatrix}A & {{X}^{*}} \\X & B \\\end{s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of linear algebra 2022-12, p.792-802
Hauptverfasser: Gumus, Ibrahim, Moradi, Hamid, Sababheh, Mohammad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A block matrix $\left[ \begin{smallmatrix}A & X \\{{X}^{*}} & B \\\end{smallmatrix} \right]$ is positive partial transpose (PPT) if both $\left[ \begin{smallmatrix}A & X \\{{X}^{*}} & B \\\end{smallmatrix} \right]$ and $\left[ \begin{smallmatrix}A & {{X}^{*}} \\X & B \\\end{smallmatrix} \right]$ are positive semi-definite. This class is significant in studying the separability criterion for density matrices. The current paper presents new relations for such matrices. This includes some equivalent forms and new related inequalities that extend some results from the literature. In the end of the paper, we present some related results for positive semi-definite block matrices, which have similar forms as those presented for PPT matrices, with applications that include significant improvement of numerical radius inequalities.
ISSN:1081-3810
1081-3810
DOI:10.13001/ela.2022.7333