The products of involutions in a matrix centralizer
A square matrix $A$ is an involution if $A^{2} = I$. The centralizer of a square matrix $S$ denoted by $\mathscr{C}(S)$ is the set of all $A$ such that $AS = SA$ over an algebraically closed field of characteristic not equal to 2. We determine necessary and sufficient conditions for $A \in \mathscr{...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of linear algebra 2022-08, p.463-482 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A square matrix $A$ is an involution if $A^{2} = I$. The centralizer of a square matrix $S$ denoted by $\mathscr{C}(S)$ is the set of all $A$ such that $AS = SA$ over an algebraically closed field of characteristic not equal to 2. We determine necessary and sufficient conditions for $A \in \mathscr{C}(S)$ to be a product of involutions in $\mathscr{C}(S)$ where $S$ is a basic Weyr matrix with homogeneous Weyr structure of length 3. Finally, we will show some results for the case when the length of the Weyr structure is greater than 3. |
---|---|
ISSN: | 1081-3810 1081-3810 |
DOI: | 10.13001/ela.2022.7091 |