The products of involutions in a matrix centralizer

A square matrix $A$ is an involution if $A^{2} = I$. The centralizer of a square matrix $S$ denoted by $\mathscr{C}(S)$ is the set of all $A$ such that $AS = SA$ over an algebraically closed field of characteristic not equal to 2. We determine necessary and sufficient conditions for $A \in \mathscr{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of linear algebra 2022-08, p.463-482
Hauptverfasser: De la Cruz, Ralph John, Tañedo, Raymond Louis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A square matrix $A$ is an involution if $A^{2} = I$. The centralizer of a square matrix $S$ denoted by $\mathscr{C}(S)$ is the set of all $A$ such that $AS = SA$ over an algebraically closed field of characteristic not equal to 2. We determine necessary and sufficient conditions for $A \in \mathscr{C}(S)$ to be a product of involutions in $\mathscr{C}(S)$ where $S$ is a basic Weyr matrix with homogeneous Weyr structure of length 3. Finally, we will show some results for the case when the length of the Weyr structure is greater than 3.
ISSN:1081-3810
1081-3810
DOI:10.13001/ela.2022.7091