On decompositions of matrices into products of commutators of involutions

Let $F$ be a field and let $n$ be a natural number greater than $1$. The aim of this paper is to prove that if $F$ contains at least three elements, then every matrix in the special linear group $\mathrm{SL}_n(F)$ is a product of at most two commutators of involutions.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of linear algebra 2022-02, p.123-130
Hauptverfasser: Nam Son, Tran, Huu Dung, Truong, Thi Thai Ha, Nguyen, Hoang Bien, Mai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $F$ be a field and let $n$ be a natural number greater than $1$. The aim of this paper is to prove that if $F$ contains at least three elements, then every matrix in the special linear group $\mathrm{SL}_n(F)$ is a product of at most two commutators of involutions.
ISSN:1081-3810
1081-3810
DOI:10.13001/ela.2022.6797