On tensor GMRES and Golub-Kahan methods via the T-product for color image processing
The present paper is concerned with developing tensor iterative Krylov subspace methods to solve large multi-linear tensor equations. We use the T-product for two tensors to define tensor tubal global Arnoldi and tensor tubal global Golub-Kahan bidiagonalization algorithms. Furthermore, we illustrat...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of linear algebra 2021-07, Vol.37, p.524-543 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present paper is concerned with developing tensor iterative Krylov subspace methods to solve large multi-linear tensor equations. We use the T-product for two tensors to define tensor tubal global Arnoldi and tensor tubal global Golub-Kahan bidiagonalization algorithms. Furthermore, we illustrate how tensor-based global approaches can be exploited to solve ill-posed problems arising from recovering blurry multichannel (color) images and videos, using the so-called Tikhonov regularization technique, to provide computable approximate regularized solutions. We also review a generalized cross-validation and discrepancy principle type of criterion for the selection of the regularization parameter in the Tikhonov regularization. Applications to image sequence processing are given to demonstrate the efficiency of the algorithms. |
---|---|
ISSN: | 1081-3810 1081-3810 |
DOI: | 10.13001/ela.2021.5471 |