On the Existence of Hurwitz Polynomials with no Hadamard Factorization

A Hurwitz stable polynomial of degree $n\geq1$ has a Hadamard factorization if it is a Hadamard product (i.e., element-wise multiplication) of two Hurwitz stable polynomials of degree $n$. It is known that Hurwitz stable polynomials of degrees less than four have a Hadamard factorization. It is show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of linear algebra 2020-04, Vol.36 (36), p.210-213
Hauptverfasser: Białas, Stanisław, Góra, Michał
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Hurwitz stable polynomial of degree $n\geq1$ has a Hadamard factorization if it is a Hadamard product (i.e., element-wise multiplication) of two Hurwitz stable polynomials of degree $n$. It is known that Hurwitz stable polynomials of degrees less than four have a Hadamard factorization. It is shown that, for arbitrary $n\geq4$, there exists a Hurwitz stable polynomial of degree $n$ which does not have a Hadamard factorization.
ISSN:1081-3810
1081-3810
DOI:10.13001/ela.2020.5097