Relations between classes of potentially stable sign patterns
Two subsets of the potentially stable sign patterns of order $n$ have recently been defined, namely, those that allow sets of (refined) inertias $\mathbb{S}_n$ and $\mathbb{H}_n$. For $n=2$ and $n=3$, it is proved that a sign pattern is potentially stable if and only if it is sign stable, allows $\m...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of linear algebra 2020-08, Vol.36 (36), p.561-569 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two subsets of the potentially stable sign patterns of order $n$ have recently been defined, namely, those that allow sets of (refined) inertias $\mathbb{S}_n$ and $\mathbb{H}_n$. For $n=2$ and $n=3$, it is proved that a sign pattern is potentially stable if and only if it is sign stable, allows $\mathbb{S}_n$, or allows $\mathbb{H}_n$. This result is also true for sign patterns of order $4$ with associated graph that is a tree, remains open for non-tree potentially stable sign patterns of order $4$, and is false for potentially stable sign patterns of orders greater than or equal to $5$.
|
---|---|
ISSN: | 1081-3810 1081-3810 |
DOI: | 10.13001/ela.2020.4929 |