Maps Preserving Norms of Generalized Weighted Quasi-arithmetic Means of Invertible Positive Operators
In this paper, the problem of describing the structure of transformations leaving norms of generalized weighted quasi-arithmetic means of invertible positive operators invariant is discussed. In a former result of the authors, this problem was solved for weighted quasi-arithmetic means, and here the...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of linear algebra 2019-08, Vol.35, p.357-364 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the problem of describing the structure of transformations leaving norms of generalized weighted quasi-arithmetic means of invertible positive operators invariant is discussed. In a former result of the authors, this problem was solved for weighted quasi-arithmetic means, and here the corresponding result is generalized by establishing its solution under certain mild conditions. It is proved that in a quite general setting, generalized weighted quasi-arithmetic means on self-adjoint operators are not monotone in their variables which is an interesting property. Moreover, the relation of these means with the Kubo-Ando means is investigated and it is shown that the common members of the classes of these types of means are weighted arithmetic means. |
---|---|
ISSN: | 1081-3810 1081-3810 |
DOI: | 10.13001/1081-3810.3897 |