On the maximal numerical range of some matrices

The maximal numerical range $W_0(A)$ of a matrix $A$ is the (regular) numerical range $W(B)$ of its compression $B$ onto the eigenspace $\mathcal L$ of $A^*A$ corresponding to its maximal eigenvalue. So, always $W_0(A)\subseteq W(A)$. Conditions under which $W_0(A)$ has a non-empty intersection with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of linear algebra 2018-06, Vol.34, p.288-303
Hauptverfasser: Hamed, Ali, Spitkovsky, Ilya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The maximal numerical range $W_0(A)$ of a matrix $A$ is the (regular) numerical range $W(B)$ of its compression $B$ onto the eigenspace $\mathcal L$ of $A^*A$ corresponding to its maximal eigenvalue. So, always $W_0(A)\subseteq W(A)$. Conditions under which $W_0(A)$ has a non-empty intersection with the boundary of $W(A)$ are established, in particular, when $W_0(A)=W(A)$. The set $W_0(A)$ is also described explicitly for matrices unitarily similar to direct sums of $2$-by-$2$ blocks, and some insight into the behavior of $W_0(A)$ is provided when $\mathcal L$ has codimension one.
ISSN:1081-3810
1081-3810
DOI:10.13001/1081-3810.3774