On the Matrix Square Root via Geometric Optimization

This paper is triggered by the preprint [P. Jain, C. Jin, S.M. Kakade, and P. Netrapalli. Computing matrix squareroot via non convex local search. Preprint, arXiv:1507.05854, 2015.], which analyzes gradient-descent for computing the square root of a positive definite matrix. Contrary to claims of Ja...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of linear algebra 2016-06, Vol.31, p.433-443
1. Verfasser: Sra, Suvrit
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is triggered by the preprint [P. Jain, C. Jin, S.M. Kakade, and P. Netrapalli. Computing matrix squareroot via non convex local search. Preprint, arXiv:1507.05854, 2015.], which analyzes gradient-descent for computing the square root of a positive definite matrix. Contrary to claims of Jain et al., the author’s experiments reveal that Newton-like methods compute matrix square roots rapidly and reliably, even for highly ill-conditioned matrices and without requiring com-mutativity. The author observes that gradient-descent converges very slowly primarily due to tiny step-sizes and ill-conditioning. The paper derives an alternative first-order method based on geodesic convexity; this method admits a transparent convergence analysis (< 1 page), attains linear rate, and displays reliable convergence even for rank deficient problems. Though superior to gradient-descent, ultimately this method is also outperformed by a well-known scaled Newton method. Nevertheless, the primary value of the paper is conceptual: it shows that for deriving gradient based methods for the matrix square root, the manifold geometric view of positive definite matrices can be much more advantageous than the Euclidean view.
ISSN:1081-3810
1081-3810
DOI:10.13001/1081-3810.3196