On the Matrix Square Root via Geometric Optimization
This paper is triggered by the preprint [P. Jain, C. Jin, S.M. Kakade, and P. Netrapalli. Computing matrix squareroot via non convex local search. Preprint, arXiv:1507.05854, 2015.], which analyzes gradient-descent for computing the square root of a positive definite matrix. Contrary to claims of Ja...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of linear algebra 2016-06, Vol.31, p.433-443 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is triggered by the preprint [P. Jain, C. Jin, S.M. Kakade, and P. Netrapalli. Computing matrix squareroot via non convex local search. Preprint, arXiv:1507.05854, 2015.], which analyzes gradient-descent for computing the square root of a positive definite matrix. Contrary to claims of Jain et al., the authorâs experiments reveal that Newton-like methods compute matrix square roots rapidly and reliably, even for highly ill-conditioned matrices and without requiring com-mutativity. The author observes that gradient-descent converges very slowly primarily due to tiny step-sizes and ill-conditioning. The paper derives an alternative first-order method based on geodesic convexity; this method admits a transparent convergence analysis (< 1 page), attains linear rate, and displays reliable convergence even for rank deficient problems. Though superior to gradient-descent, ultimately this method is also outperformed by a well-known scaled Newton method. Nevertheless, the primary value of the paper is conceptual: it shows that for deriving gradient based methods for the matrix square root, the manifold geometric view of positive definite matrices can be much more advantageous than the Euclidean view. |
---|---|
ISSN: | 1081-3810 1081-3810 |
DOI: | 10.13001/1081-3810.3196 |