A New Method of Selecting Effective Parts for Minimizing a Target Response Using Mutual Mean Compliance

The accuracy of simulation for automotive structure is increasing more and more. However, it is difficult to find out a few good design variables under a mass constrain, since there are tremendous design variable candidates in a large-scale Finite Element model. Therefore we have to select some effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series C 2006/07/25, Vol.72(719), pp.2080-2087
Hauptverfasser: TSURUMI, Yasuaki, NAKAGAWA, Toshiaki, YAMAKAWA, Hiroshi
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accuracy of simulation for automotive structure is increasing more and more. However, it is difficult to find out a few good design variables under a mass constrain, since there are tremendous design variable candidates in a large-scale Finite Element model. Therefore we have to select some effective parts as design variables before solving an optimization problem. In this paper we propose a new basic concept of contribution analysis for minimizing a target response using mutual mean compliance. First, we present how to calculate a contribution rate to a static target response after clarifying the difference between elastic strain energy and mutual mean compliance. Secondly, we expand the above method to a dynamic problem. Then, the dynamic contribution rate is divided into 3 components, which are mass, damping and stiffness ones. Finally, we demonstrate the proposed method using a cantilever model.
ISSN:0387-5024
1884-8354
DOI:10.1299/kikaic.72.2080