Optimal Exploration–Exploitation in a Multi-armed Bandit Problem with Non-stationary Rewards

In a multi-armed bandit problem, a gambler needs to choose at each round one of K arms, each characterized by an unknown reward distribution. The objective is to maximize cumulative expected earnings over a planning horizon of length T, and performance is measured in terms of regret relative to a (s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic systems 2019-12, Vol.9 (4), p.319-337
Hauptverfasser: Besbes, Omar, Gur, Yonatan, Zeevi, Assaf
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a multi-armed bandit problem, a gambler needs to choose at each round one of K arms, each characterized by an unknown reward distribution. The objective is to maximize cumulative expected earnings over a planning horizon of length T, and performance is measured in terms of regret relative to a (static) oracle that knows the identity of the best arm a priori. This problem has been studied extensively when the reward distributions do not change over time, and uncertainty essentially amounts to identifying the optimal arm. We complement this literature by developing a flexible non-parametric model for temporal uncertainty in the rewards. The extent of temporal uncertainty is measured via the cumulative mean change in the rewards over the horizon, a metric we refer to as temporal variation, and regret is measured relative to a (dynamic) oracle that plays the point-wise optimal action at each period. Assuming that nature can choose any sequence of mean rewards such that their temporal variation does not exceed V (a temporal uncertainty budget), we characterize the complexity of this problem via the minimax regret, which depends on V (the hardness of the problem), the horizon length T, and the number of arms K.
ISSN:1946-5238
1946-5238
DOI:10.1287/stsy.2019.0033