Optimal Exploration–Exploitation in a Multi-armed Bandit Problem with Non-stationary Rewards
In a multi-armed bandit problem, a gambler needs to choose at each round one of K arms, each characterized by an unknown reward distribution. The objective is to maximize cumulative expected earnings over a planning horizon of length T, and performance is measured in terms of regret relative to a (s...
Gespeichert in:
Veröffentlicht in: | Stochastic systems 2019-12, Vol.9 (4), p.319-337 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a multi-armed bandit problem, a gambler needs to choose at each round one of K arms, each characterized by an unknown reward distribution. The objective is to maximize cumulative expected earnings over a planning horizon of length T, and performance is measured in terms of regret relative to a (static) oracle that knows the identity of the best arm a priori. This problem has been studied extensively when the reward distributions do not change over time, and uncertainty essentially amounts to identifying the optimal arm. We complement this literature by developing a flexible non-parametric model for temporal uncertainty in the rewards. The extent of temporal uncertainty is measured via the cumulative mean change in the rewards over the horizon, a metric we refer to as temporal variation, and regret is measured relative to a (dynamic) oracle that plays the point-wise optimal action at each period. Assuming that nature can choose any sequence of mean rewards such that their temporal variation does not exceed V (a temporal uncertainty budget), we characterize the complexity of this problem via the minimax regret, which depends on V (the hardness of the problem), the horizon length T, and the number of arms K. |
---|---|
ISSN: | 1946-5238 1946-5238 |
DOI: | 10.1287/stsy.2019.0033 |