Short Shop Schedules

We consider the open shop, job shop, and flow shop scheduling problems with integral processing times. We give polynomial-time algorithms to determine if an instance has a schedule of length at most 3, and show that deciding if there is a schedule of length at most 4 is -complete. The latter result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 1997-03, Vol.45 (2), p.288-294
Hauptverfasser: Williamson, D. P, Hall, L. A, Hoogeveen, J. A, Hurkens, C. A. J, Lenstra, J. K, Sevast'janov, S. V, Shmoys, D. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the open shop, job shop, and flow shop scheduling problems with integral processing times. We give polynomial-time algorithms to determine if an instance has a schedule of length at most 3, and show that deciding if there is a schedule of length at most 4 is -complete. The latter result implies that, unless = , there does not exist a polynomial-time approximation algorithm for any of these problems that constructs a schedule with length guaranteed to be strictly less than 5/4 times the optimal length. This work constitutes the first nontrivial theoretical evidence that shop scheduling problems are hard to solve even approximately.
ISSN:0030-364X
1526-5463
DOI:10.1287/opre.45.2.288