Lot Sizing with Inventory Bounds and Fixed Costs: Polyhedral Study and Computation
We investigate the polyhedral structure of the lot-sizing problem with inventory bounds. We consider two models, one with linear cost on inventory, the other with linear and fixed costs on inventory. For both models, we identify facet-defining inequalities that make use of the inventory bounds expli...
Gespeichert in:
Veröffentlicht in: | Operations research 2005-07, Vol.53 (4), p.711-730 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the polyhedral structure of the lot-sizing problem with inventory bounds. We consider two models, one with linear cost on inventory, the other with linear and fixed costs on inventory. For both models, we identify facet-defining inequalities that make use of the inventory bounds explicitly and give exact separation algorithms. We also describe a linear programming formulation of the problem when the order and inventory costs satisfy the Wagner-Whitin nonspeculative property. We present computational experiments that show the effectiveness of the results in tightening the linear programming relaxations of the lot-sizing problem with inventory bounds and fixed costs. |
---|---|
ISSN: | 0030-364X 1526-5463 |
DOI: | 10.1287/opre.1050.0223 |