Hidden Convexity, Optimization, and Algorithms on Rotation Matrices

This paper studies hidden convexity properties associated with constrained optimization problems over the set of rotation matrices SO ( n ) . Such problems are nonconvex because of the constraint X ∈ SO ( n ) . Nonetheless, we show that certain linear images of SO ( n ) are convex, opening up the po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2024-07
Hauptverfasser: Ramachandran, Akshay, Shu, Kevin, Wang, Alex L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies hidden convexity properties associated with constrained optimization problems over the set of rotation matrices SO ( n ) . Such problems are nonconvex because of the constraint X ∈ SO ( n ) . Nonetheless, we show that certain linear images of SO ( n ) are convex, opening up the possibility for convex optimization algorithms with provable guarantees for these problems. Our main technical contributions show that any two-dimensional image of SO ( n ) is convex and that the projection of SO ( n ) onto its strict upper triangular entries is convex. These results allow us to construct exact convex reformulations for constrained optimization problems over SO ( n ) with a single constraint or with constraints defined by low-rank matrices. Both of these results are maximal in a formal sense. Funding: A. Ramachandran was supported by the H2020 program of the European Research Council [Grant 805241-QIP]. A. L. Wang was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Grant OCENW.GROOT.2019.015 (OPTIMAL)]. K. Shu was supported by the Georgia Institute of Technology (ACO-ARC fellowship).
ISSN:0364-765X
1526-5471
DOI:10.1287/moor.2023.0114