Ride-Hailing Order Dispatching at DiDi via Reinforcement Learning
Order dispatching is instrumental to the marketplace engine of a large-scale ride-hailing platform, such as the DiDi platform, which continuously matches passenger trip requests to drivers at a scale of tens of millions per day. Because of the dynamic and stochastic nature of supply and demand in th...
Gespeichert in:
Veröffentlicht in: | INFORMS journal on applied analytics 2020-09, Vol.50 (5), p.272-286 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Order dispatching is instrumental to the marketplace engine of a large-scale ride-hailing platform, such as the DiDi platform, which continuously matches passenger trip requests to drivers at a scale of tens of millions per day. Because of the dynamic and stochastic nature of supply and demand in this context, the ride-hailing order-dispatching problem is challenging to solve for an optimal solution. Added to the complexity are considerations of system response time, reliability, and multiple objectives. In this paper, we describe how our approach to this optimization problem has evolved from a combinatorial optimization approach to one that encompasses a semi-Markov decision-process model and deep reinforcement learning. We discuss the various practical considerations of our solution development and real-world impact to the business. |
---|---|
ISSN: | 0092-2102 2644-0865 1526-551X 2644-0873 |
DOI: | 10.1287/inte.2020.1047 |