An Alternating Manifold Proximal Gradient Method for Sparse Principal Component Analysis and Sparse Canonical Correlation Analysis

Sparse principal component analysis and sparse canonical correlation analysis are two essential techniques from high-dimensional statistics and machine learning for analyzing large-scale data. Both problems can be formulated as an optimization problem with nonsmooth objective and nonconvex constrain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:INFORMS journal on optimization 2020-07, Vol.2 (3), p.192-208
Hauptverfasser: Chen, Shixiang, Ma, Shiqian, Xue, Lingzhou, Zou, Hui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sparse principal component analysis and sparse canonical correlation analysis are two essential techniques from high-dimensional statistics and machine learning for analyzing large-scale data. Both problems can be formulated as an optimization problem with nonsmooth objective and nonconvex constraints. Because nonsmoothness and nonconvexity bring numerical difficulties, most algorithms suggested in the literature either solve some relaxations of them or are heuristic and lack convergence guarantees. In this paper, we propose a new alternating manifold proximal gradient method to solve these two high-dimensional problems and provide a unified convergence analysis. Numerical experimental results are reported to demonstrate the advantages of our algorithm.
ISSN:2575-1484
2575-1492
DOI:10.1287/ijoo.2019.0032