Equalities between the BLUEs and BLUPs under the partitioned linear fixed model and the corresponding mixed model
In this article we consider the partitioned fixed linear model F : y = X1β1 + X2β2 + ε" and the corresponding mixed model M : y =X1β1+X2u+ ε, where ε is a random error vector and u is a random effect vector. In 2006, Isotalo, M¨ols, and Puntanen found conditions under which an arbitrary represe...
Gespeichert in:
Veröffentlicht in: | Acta et commentationes Universitatis Tartuensis de mathematica 2021-12, Vol.25 (2), p.239-257 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we consider the partitioned fixed linear model F : y = X1β1 + X2β2 + ε" and the corresponding mixed model M : y =X1β1+X2u+ ε, where ε is a random error vector and u is a random effect vector. In 2006, Isotalo, M¨ols, and Puntanen found conditions under which an arbitrary representation of the best linear unbiased estimator (BLUE) of an estimable parametric function of β1 in the fixed model F remains BLUE in the mixed model M . In this paper we extend the results concerning further equalities arising from models F and M. |
---|---|
ISSN: | 1406-2283 2228-4699 |
DOI: | 10.12697/ACUTM.2021.25.16 |