Equalities between the BLUEs and BLUPs under the partitioned linear fixed model and the corresponding mixed model

In this article we consider the partitioned fixed linear model F : y = X1β1 + X2β2 + ε" and the corresponding mixed model M : y =X1β1+X2u+ ε, where ε is a random error vector and u is a random effect vector. In 2006, Isotalo, M¨ols, and Puntanen found conditions under which an arbitrary represe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta et commentationes Universitatis Tartuensis de mathematica 2021-12, Vol.25 (2), p.239-257
Hauptverfasser: Haslett, Stephen, Isotalo, Jarkko, Puntanen, Simo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we consider the partitioned fixed linear model F : y = X1β1 + X2β2 + ε" and the corresponding mixed model M : y =X1β1+X2u+ ε, where ε is a random error vector and u is a random effect vector. In 2006, Isotalo, M¨ols, and Puntanen found conditions under which an arbitrary representation of the best linear unbiased estimator (BLUE) of an estimable parametric function of β1 in the fixed model F remains BLUE in the mixed model M . In this paper we extend the results concerning further equalities arising from models F and M.
ISSN:1406-2283
2228-4699
DOI:10.12697/ACUTM.2021.25.16