Evaluation of cytosine conversion methods for whole-genome DNA methylation profiling [version 1; peer review: 2 not approved]
Background: DNA methylation, the most common epigenetic modification, is defined as the removal or addition of methyl groups to cytosine bases. Studying DNA methylation provides insight into the regulation of gene expression, transposon mobility, genomic stability, and genomic imprinting. Whole-geno...
Gespeichert in:
Veröffentlicht in: | F1000 research 2022, Vol.11, p.1450 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: DNA methylation, the most common epigenetic modification, is defined as the removal or addition of methyl groups to cytosine bases. Studying DNA methylation provides insight into the regulation of gene expression, transposon mobility, genomic stability, and genomic imprinting. Whole-genome DNA methylation profiling (WGDM) is a powerful tool to find DNA methylation. This technique combines standard whole-genome sequencing methodology (
e.g., Illumina high-throughput sequencing) with additional steps where unmethylated cytosine is converted to uracil. However, factors such as low cytosine conversion efficiency and inadequate DNA recovery during sample preparation oftentimes render poor-quality data. It is therefore imperative to benchmark sample preparation protocols to increase sequencing data quality and reduce false positives in methylation detection.
Methods: A survey analysis was performed to investigate the efficiency of the following commercially available cytosine conversion kits when coupled with the NEBNext® Ultra™ DNA Library Prep Kit for Illumina (NEB): Zymo Research EZ DNA Methylation™ kit (hereafter known as Zymo Conversion kit), QIAGEN EpiTect Bisulfite kit (hereafter known as QIAGEN Conversion kit), and NEBNext® Enzymatic Methyl-seq Conversion Module (hereafter known as NEB EM-seq kit). Input DNA was derived from soybean (
Glycine max [L.] Merrill) leaf tissue.
Results: Of those tested, the QIAGEN Conversion kit provided the best sample recovery and the highest number of sequencing reads, whereas the Zymo Conversion kit had the best cytosine conversion efficiency and the least duplication. The sequence library obtained with the NEB EM-seq kit had the highest mapping efficiency (percentage of reads mapped to the genome). The data quality (defined by Phred score) and methylated cytosine call were similar between kits.
Conclusions: This study offers the groundwork for selecting an effective DNA methylation detection kit for crop genome research. |
---|---|
ISSN: | 2046-1402 2046-1402 |
DOI: | 10.12688/f1000research.128391.1 |