Genetic diversity and multiplicity of Plasmodium falciparum merozoite surface protein 2 in field isolates from Sudan [version 1; peer review: 1 not approved]

Background: Malaria  is a major health problem, with over one third of worldwide populations currently at risk.  Determining the genetic diversity of plasmodium parasites is essential for assessing the efficacy of antimalarial drugs and for future vaccine development. This study investigated the gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:F1000 research 2017, Vol.6, p.1790
Hauptverfasser: Mustafa, Shaza O, Abdel Hamid, Muzamil M, Aboud, Mariam A, Amin, Mutaz, Muneer, Mohamed S, Yasin, Kyakonye, Mahgoub, Nouh S, El Bagir, Nabiela M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Malaria  is a major health problem, with over one third of worldwide populations currently at risk.  Determining the genetic diversity of plasmodium parasites is essential for assessing the efficacy of antimalarial drugs and for future vaccine development. This study investigated the genetic diversity of P. falciparum merozoite surface protein 2 (MSP2), and multiplicity of infection (MOI) in different geographic regions in Sudan. Methods: A total of 271 patients with uncomplicated malaria were recruited from four ecological sites during malaria transmission season, 2011-2013. P. falciparum was confirmed using species specific primers targeting the rDNA gene. All P. falciparum positive samples were genotyped for the major MSP2 allelic families (IC1/3D7 and FC27 MSP2 allele) using nested PCR. Multiplicity of infection and allele frequencies were determined. Results: A total of 241 samples (88.9%) were confirmed positive for P. falciparum. The number of different MSP2 alleles were 14, 15, 13 and 12 in Khartoum, Gezira, River Nile and Red Sea states, respectively. The 3D7 allelic family was more prevalent in the states of Khartoum, Gezira, River Nile and Red Sea compared to the FC27 allelic family. Multiclonal infections were observed in 25.8% of patients, with a mean multiplicity of infection (MOI) of 1.45. MOIs were highest in the age group over 40, with an average of 2 and 1.68 in Khartoum and Gezira states, respectively, however MOIs in River Nile and Red Sea states were higher in age groups below 18, with an average of 1.37 and 1.33, respectively. Conclusions: MSP2 allelic genotyping revealed MOI and diversity of the Sudanese P. falciparum isolates. The results of our study are expected to influence current and future malaria control strategies, since the MOI predicts development of clinical malaria and subsequent efficacy of antimalarial treatment.
ISSN:2046-1402
2046-1402
DOI:10.12688/f1000research.12585.1