Effect of microfluidic rectangular microelectrode geometry on bioparticles manipulation in dielectrophoretic application [version 1; peer review: 4 approved with reservations]

Background: Microfluidic cell manipulation techniques have been continually developed and integrated into miniature chips as a so-called lab-on-a-chip (LOC) platform for high-throughput bioassays. Among the various mechanisms of bioparticles manipulation by electrically induced forces, dielectrophor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:F1000 research 2022, Vol.11, p.172
Hauptverfasser: Shee, Zuriel Da En, Mhd Noor, Ervina Efzan Binti, Ahmad Kayani, Aminuddin Bin, Abd Rahman, Noor Ziela Binti
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Microfluidic cell manipulation techniques have been continually developed and integrated into miniature chips as a so-called lab-on-a-chip (LOC) platform for high-throughput bioassays. Among the various mechanisms of bioparticles manipulation by electrically induced forces, dielectrophoresis (DEP) has been regarded as the most promising technique utilized in microfluidic systems. Into the micro- to nano-scale level of DEP configuration, the common challenges of undesirable side effects such as electrohydrodynamic effects, joule heating, and electrolysis that may occur in the microfluidic system has always been a hurdle which would severely limit the DEP performance. Methods: A numerical simulation study was performed on a versatile capability of a rectangular type of dielectrophoresis microelectrode with different parametric design configuration variables (channel height: 20-50 µm; electrode width 20-100 µm; electrode spacing 5-50 µm). Results: Numerical study results have shown that the ideal dimension range of design configuration for optimum DEP performance have been identified to be 40µm in channel height, 20-40 µm in electrode width and 5-15µm in electrode spacing, further increasing of the dimensions have shown a decrease in DEP performance consequently abridged the bioparticle manipulation. Conclusion: This investigation of the parametric design of the rectangular geometry microelectrode has provided necessary insight to the microelectrode design information and parametric considerations for optimum DEP device fabrication and enhancement.
ISSN:2046-1402
2046-1402
DOI:10.12688/f1000research.108496.1