“Rootless” Ophiolites above the Exhuming Pelagonian Core Complex, Northern Greece
The Mesohellenic ophiolites (MHO) in the Western Hellenides are part of an oceanic slab emplaced onto Pelagonian (Pangaean) continental rocks in the mid-Jurassic with a documented NE ophiolite emplacement. Ophiolitic outliers to the east of the MHO are oceanic lithospheric fragments, not complete op...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Geological Society of Greece 2019-10, Vol.54 (1), p.60 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Mesohellenic ophiolites (MHO) in the Western Hellenides are part of an oceanic slab emplaced onto Pelagonian (Pangaean) continental rocks in the mid-Jurassic with a documented NE ophiolite emplacement. Ophiolitic outliers to the east of the MHO are oceanic lithospheric fragments, not complete ophiolite bodies, preserved above exhumed Pelagonia continental rocks. As these fragments lack connection to original root zone provenance, we refer to these as the “rootless” ophiolites.Pelagonian exhumation, possibly triggered by transcurent shear along its continental margin with the Pindos basin, began by the Late Jurassic and continued into the mid-Cretaceous. Exhumation affected the emplaced oceanic slab in the following ways: i) The metamorphic facies of the basal mélange separating the ophiolite from the Pelagonian basement grades from phyllitic to schist and amphibolite-schist over the exhumed Pelagonia. ii) Ophiolitic remnants are metasomatized where in contact with the exhumed Pelagonian rocks. iii) Remnant ophiolitic fragments are rotated and largely disassociated from their original relative pseudostratigraphic positions in their parent slab. iv) No amphibolite emplacement soles are preserved beneath ophiolitic remnants found directly above Pelagonia.East of Vourinos, remnants of the slab were tectonically entrapped between the exhuming Pelagonian core and its sedimentary overburden, and demonstrate extensional, largely gravitational displacements as well as rotation from original emplacement vectors. Primary constrictive slab emplacement features are obscured, but a general westerly sense of kinematics via listric and extensional faults have been imprinted. In the exhumation model, this "SW topping" direction cannot be interpreted as indicative of an eastern origin of the Pindos Basin ophiolites from the Vardar Zone, but rather as a local response to the uplift of Pelagonia and active deformation of the sedimentary overburden. |
---|---|
ISSN: | 0438-9557 2529-1718 |
DOI: | 10.12681/bgsg.19353 |