Functional near Infrared Optical Imaging in Cognitive Neuroscience: An Introductory Review

Cognitive neuroscience is a multidisciplinary field focused on the exploration of the neural substrates underlying cognitive functions; the most remarkable progress in understanding the relationship between brain and cognition has been made with functional brain imaging. Functional near infrared (fN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Near Infrared Spectroscopy 2012-02, Vol.20 (1), p.75-92
Hauptverfasser: Cutini, Simone, Moro, Sara Basso, Bisconti, Silvia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cognitive neuroscience is a multidisciplinary field focused on the exploration of the neural substrates underlying cognitive functions; the most remarkable progress in understanding the relationship between brain and cognition has been made with functional brain imaging. Functional near infrared (fNIR) spectroscopy is a non-invasive brain imaging technique that measures the variation of oxygenated and deoxygenated haemoglobin at high temporal resolution. Stemming from the first pioneering experiments, the use of fNIR spectroscopy in cognitive neuroscience has constantly increased. Here, we present a brief review of the fNIR spectroscopy investigations in the cognitive neuroscience field. The topics discussed encompass the classical issues in cognitive neuroscience, such as the exploration of the neural correlates of vision, language, memory, attention and executive functions. Other relevant research topics are introduced in order to show the strengths and the limitations of fNIR spectroscopy, as well as its potential in the biomedical field. This review is intended to provide a general view of the wide variety of optical imaging applications in the field of cognitive neuroscience. The increasing body of studies and the constant technical improvement suggest that fNIR spectroscopy is a versatile and promising instrument to investigate the neural correlates of human cognition.
ISSN:0967-0335
1751-6552
DOI:10.1255/jnirs.969