A new approach to the understanding of the mechanism of ischemia/reperfusion damage in the heart and the effects of anti-ischemic drugs
The classical understanding of the mechanism of anti-anginal or anti-ischemic drugs is an increase in blood supply to the heart and/or a decrease in oxygen consumption of the heart, maintaining energy balance in the heart between supply and demand and hence maintaining the tissue levels of high-ener...
Gespeichert in:
Veröffentlicht in: | Folia Pharmacologica Japonica 1996, Vol.108(4), pp.195-202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The classical understanding of the mechanism of anti-anginal or anti-ischemic drugs is an increase in blood supply to the heart and/or a decrease in oxygen consumption of the heart, maintaining energy balance in the heart between supply and demand and hence maintaining the tissue levels of high-energy phosphates. This scheme is reasonable. During reperfusion following ischemia, however, there is more serious damage to the heart, although the tissue levels of highenergy phosphates increase. This is probably because toxic substances are generated in the heart during ischemia/reperfusion. We propose that both lysophosphatidylcholine and palmitoyl-L-carnitine that accumulate in the myocardium during ischemia/reperfusion are candidates for the toxic substances that accelerate ischemia/reperfusion damage to the heart. Therefore, drugs that have anti-lysophosphatidylcholine and/or anti-palmitoyl-L-carnitine effects are promising for the treatment of ischemic heart diseases. We found that K-7259, a novel derivative of dilazep having a minimal effect on the normal heart, is a drug that attenuates the deleterious effects of both lysophosphatidylcholine and palmitoyl-L-carnitine on the heart, and therefore attenuates the ischemia/reperfusion damage. |
---|---|
ISSN: | 0015-5691 1347-8397 |
DOI: | 10.1254/fpj.108.195 |