Cyclic-AMP Inhibits Nitric Oxide-Induced Apoptosis in Human Osteoblast: The Regulation of Caspase-3, -6, -9 and the Release of Cytochrome c in Nitric Oxide-Induced Apoptosis by cAMP

Nitric oxide (NO) induces apoptotic cell death and cAMP has a significantly protective effect on NO-induced cytotoxicity in human osteoblasts, MG-63 cells. Treatment with S-nitroso-N-acetylpenicillamine (SNAP)(0.6 mM) resulted in genomic DNA fragmentation, characteristic of apoptosis. However, conco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological & pharmaceutical bulletin 2001, Vol.24(5), pp.453-460
Hauptverfasser: CHAE, Han-Jung, CHAE, Soo-Wan, AN, Nyeon-Hyoung, KIM, Jong-Hwan, KIM, Chul-Won, YOO, Sim-Keun, KIM, Hong-Hee, LEE, Zang-Hee, KIM, Hyung-Ryong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitric oxide (NO) induces apoptotic cell death and cAMP has a significantly protective effect on NO-induced cytotoxicity in human osteoblasts, MG-63 cells. Treatment with S-nitroso-N-acetylpenicillamine (SNAP)(0.6 mM) resulted in genomic DNA fragmentation, characteristic of apoptosis. However, concomitant incubation of the cells with either DBcAMP or forskolin markedly inhibited SNAP-induced apoptosis in a dose-dependent manner. Furthermore, pretreatment of MG-63 cells with H-89 or KT5720, which is known to inhibit cAMP-dependent protein kinase (PKA), abolished the protective effect of DBcAMP and forskolin on SNAP-induced apoptosis. In this study, we explored the involvement of caspases in the regulatory mechanism of SNAP-induced apoptosis by cAMP. Our data show that DBcAMP or forskolin blocked SNAP-induced caspase-3-like cysteine protease activation and that H-89, a PKA inhibitor, reversed the cAMP-induced regulatory effect of caspase-3 like protease. Consistent with the results, cAMP inhibited the proteolytic cleavage of caspase-3, -6, -9 and cytochrome c release to cytoplasm. The inhibition of caspase-3 activation did not block SNAP-induced cytochrome c release to cytoplasm, suggesting that caspase-3 activation may occur downstream of cytochrome c release. In summary, these findings show that the exposure of MG-63 cells to cAMP analogs renders them more resistant to NO-induced damage and suggests the presence of regulatory mechanisms of the cell death pathway by cAMP in which caspase-3, -6, and -9 and cytochrome c release serves to mediate NO-induced apoptosis.
ISSN:0918-6158
1347-5215
DOI:10.1248/bpb.24.453