A Nonadiabatic Ab Initio Dynamics Study on Rhodopsin and Its Analog Isorhodopsin: Chemical Dynamics Reasons behind Selection of Rhodopsin by Life
The structural difference between rhodopsin and isorhodopsin is only in the cis-position of the chromophore, but the difference leads to a large discrepancy in photoisomerization period and quantum yield. The photoinduced cis–trans isomerization dynamics of the two chromophores are investigated usin...
Gespeichert in:
Veröffentlicht in: | Chemistry letters 2011-12, Vol.40 (12), p.1395-1397 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structural difference between rhodopsin and isorhodopsin is only in the cis-position of the chromophore, but the difference leads to a large discrepancy in photoisomerization period and quantum yield. The photoinduced cis–trans isomerization dynamics of the two chromophores are investigated using a Quantum Mechanics/Molecular Mechanics trajectory surface hopping scheme. Rhodopsin shows a straightforward and fast excited-state dynamics whereas the isorhodopsin dynamics in the excited state is complicated due to differences in retinal motions and space gaps formed by surrounding residues. Consequently, the isorhodopsin → bathorhodopsin reaction is slower and less efficient. Photoexcitation of rhodopsin gives bathorhodopsin only, whereas isorhodopsin yields an analog with 9,11-di-cis-retinal in addition to bathorhodopsin. These differences explain why life uses rhodopsin rather than isorhodopsin. |
---|---|
ISSN: | 0366-7022 1348-0715 |
DOI: | 10.1246/cl.2011.1395 |