Intrinsically Chemo- and Thermostable Electron Acceptors for Efficient Organic Solar Cells

The traditional preparation of non-fullerene acceptors (NFAs) via Knoevenagel condensation reaction (KCR) of aldehyde and active methylene leaves vulnerable and reversible exocyclic vinyl bonds in structures, which undermine the intrinsic chemo- and photostability of NFAs. In this work, we demonstra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Chemical Society of Japan 2021-01, Vol.94 (1), p.183-190
Hauptverfasser: Zhang, Qian-Qian, Li, Yaokai, Wang, Di, Chen, Zeng, Li, Yuhao, Li, Shuixing, Zhu, Haiming, Lu, Xinhui, Chen, Hongzheng, Li, Chang-Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The traditional preparation of non-fullerene acceptors (NFAs) via Knoevenagel condensation reaction (KCR) of aldehyde and active methylene leaves vulnerable and reversible exocyclic vinyl bonds in structures, which undermine the intrinsic chemo- and photostability of NFAs. In this work, we demonstrate a new access to acceptor-donor-acceptor (A-D-A) NFAs via Stille coupling between new electron deficient groups and classic donor core in over 90% yield, wherein the robust carbon-carbon bonds, replacing the exocyclic double bonds from traditional KCR, result in stable A-D-A acceptors, Q1-XF (X representing 0, 2 and 4 fluorine atoms, respectively). Among the three studied examples, Q1-4F exhibits improved optoelectronic and electron transport properties, leading to the best photovoltaic performance with optimal charge kinetics for Q1-4F based OSCs. Overall, this strategy can lead to a new way for developing stable photovoltaic materials.
ISSN:0009-2673
1348-0634
DOI:10.1246/bcsj.20200231