Performance of multi-dimensional models for simulating diesel premixed charge compression ignition engine combustion using low- and high-pressure injectors

Abstract An engine CFD model has been developed to simulate premixed charge compression ignition (PCCI) combustion using detailed chemistry. The numerical model is based on the KIVA code that is modified to use CHEMKIN as the chemistry solver. The model was applied to simulate ignition, combustion,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engine research 2005-10, Vol.6 (5), p.475-486
Hauptverfasser: Kong, S-C, Ra, Y, Reitz, R D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract An engine CFD model has been developed to simulate premixed charge compression ignition (PCCI) combustion using detailed chemistry. The numerical model is based on the KIVA code that is modified to use CHEMKIN as the chemistry solver. The model was applied to simulate ignition, combustion, and emissions processes in diesel engines operated to achieve PCCI conditions. Diesel PCCI experiments using both low- and high-pressure injectors were simulated. For the low-pressure injector with early injection (close to intake valve closure), the model shows that wall wetting can be minimized by using a pressure-swirl atomizer with a variable spray angle. In the case of using a high-pressure injector, it is found that late injection (SOI = 5 ° ATDC) benefits soot emissions as a result of low-temperature combustion at highly premixed conditions. The model was also used to validate the emission reduction potential of an HSDI diesel engine using a double injection strategy that favours PCCI conditions. It is concluded that the present model is useful to assess future engine combustion concepts, such as PCCI and low-temperature combustion (LTC).
ISSN:1468-0874
2041-3149
DOI:10.1243/146808705X30567