Brain Oscillator(s) Underlying Rhythmic Cerebral And Buccal Motor Output In The Mollusc, Pleurobranchae Calieornica
Tonic (d.c.) intracellular depolarization of the previously identified phasic paracerebral feeding command interneurones (PCps) in the brain of the carnivorous gastropod Pleurobranchaea causes oscillatory neural activity in the brain, both before and after transecting the cerebrobuccal connectives....
Gespeichert in:
Veröffentlicht in: | Journal of experimental biology 1984-05, Vol.110 (1), p.1-15 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tonic (d.c.) intracellular depolarization of the previously identified phasic paracerebral feeding command interneurones (PCps) in the brain of the carnivorous gastropod Pleurobranchaea causes oscillatory neural activity in the brain, both before and after transecting the cerebrobuccal connectives. Therefore, cycle-by-cycle ascending input from the buccal ganglion is not essential to cyclic brain activity. Instead the brain contains an independent neural oscillator(s), in addition to the oscillator(s) demonstrated previously in the buccal ganglion (Davis et al. 1973). Transection of the cerebrobuccal connectives immediately reduces the previously demonstrated (Kovac, Davis, Matera & Croll, 1983) long-latency polysynaptic excitation of the PCps by the polysynaptic excitors (PSEs) of the PCps. Therefore polysynaptic excitation of the PCps by the PSEs is mediated by an ascending neurone(s) from the buccal ganglion. The capacity of feeding command interneurones to induce neural oscillation in the isolated brain declines to near zero within 1 h after transection of the cerebrobuccal connectives, suggesting that this capacity is normally maintained by ascending information from the buccal ganglion. The results show that this motor system conforms to a widely applicable general model of the neural control of rhythmic behaviour, by which independent neural oscillators distributed widely in the central nervous system are coupled together to produce coordinated movement. |
---|---|
ISSN: | 0022-0949 1477-9145 |
DOI: | 10.1242/jeb.110.1.1 |