Quality control of plant peroxisomes in organ specific manner via autophagy
Peroxisomes are essential organelles characterized by the possession of enzymes that produce hydrogen peroxide (H2O2) as part of their normal catalytic cycle. During the metabolic process, peroxisomal proteins are inevitably damaged by H2O2 and the integrity of the peroxisomes is impaired. Here, we...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2014-01 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Peroxisomes are essential organelles characterized by the possession of enzymes that produce hydrogen peroxide (H2O2) as part of their normal catalytic cycle. During the metabolic process, peroxisomal proteins are inevitably damaged by H2O2 and the integrity of the peroxisomes is impaired. Here, we show that autophagy, an intracellular process for vacuolar degradation, selectively degrades dysfunctional peroxisomes. Marked accumulation of peroxisomes was observed in the leaves but not roots of autophagy-related (ATG) gene-knockout Arabidopsis thaliana mutants. The peroxisomes in leaf cells contained markedly increased levels of catalase in an insoluble and inactive aggregate form. The chemically inducible complementation system in ATG5 knockout Arabidopsis provided the evidence that these accumulated peroxisomes were delivered to vacuoles by autophagy for degradation. Interestingly, autophagosomal membrane structures specifically recognized the abnormal peroxisomes at the site of the aggregates. Thus, autophagy is essential for the quality control of peroxisomes in leaves for proper plant development under natural growth conditions. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.139709 |