Localization and regulation of the cdk-activating kinase (Cak1p) from budding yeast

Eukaryotic cell cycles are controlled by the activities of cyclin-dependent kinases (cdks). The major cdk in budding yeast, Saccharomyces cerevisiae, is Cdc28p. Activation of Cdc28p requires phosphorylation on threonine 169 and binding to a cyclin. Thr-169 is phosphorylated by the cdk-activating kin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 1998-12, Vol.111 ( Pt 24) (24), p.3585-3596
Hauptverfasser: Kaldis, P, Pitluk, Z W, Bany, I A, Enke, D A, Wagner, M, Winter, E, Solomon, M J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eukaryotic cell cycles are controlled by the activities of cyclin-dependent kinases (cdks). The major cdk in budding yeast, Saccharomyces cerevisiae, is Cdc28p. Activation of Cdc28p requires phosphorylation on threonine 169 and binding to a cyclin. Thr-169 is phosphorylated by the cdk-activating kinase (CAK), Cak1p, which was recently identified as the physiological CAK in budding yeast. Here we present our further characterization of yeast Cak1p. We have found that Cak1p is dispersed throughout the cell as shown by immunofluorescence; biochemical subcellular fractionation confirmed that most of the Cak1p is found in the cytoplasm. Cak1p is a monomeric enzyme in crude yeast lysates. Mutagenesis of potential sites of activating phosphorylation had little effect on the activity of Cak1p in vitro or in vivo. Furthermore, Cak1p contains no posttranslational modifications detectable by two-dimensional isoelectric focusing. We found that Cak1p is a stable protein during exponential growth but that its expression decreases considerably when cells enter stationary phase. In contrast, Cak1p levels oscillate dramatically during meiosis, reflecting regulation at both the transcriptional and post-translational level. The localization and regulation of Cak1p are in contrast to those of the known vertebrate CAK, p40(MO15).
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.111.24.3585