Cytosolic phospholipase A2 is activated by the hepatocyte growth factor receptor-kinase in Madin Darby canine kidney cells

The hepatocyte growth factor/scatter factor (HGF/SF) receptor which is a transmembrane protein encoded by the Met oncogene, possesses intrinsic tyrosine kinase activity which transduces the mitogenic, morphogenic and the scattering effect of HGF/SF. The pluripotent signal of HGF/SF is transduced thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 1997-07, Vol.110 ( Pt 14) (14), p.1655-1663
Hauptverfasser: Skouteris, G G, Schröder, C H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hepatocyte growth factor/scatter factor (HGF/SF) receptor which is a transmembrane protein encoded by the Met oncogene, possesses intrinsic tyrosine kinase activity which transduces the mitogenic, morphogenic and the scattering effect of HGF/SF. The pluripotent signal of HGF/SF is transduced through association of the Met receptor with various intracellular adaptors. Phosphorylation of cytosolic phospholipase A2 (cPLA2) is associated with activation of this molecule which in turn leads to arachidonic acid production followed by release of prostaglandins and related compounds exerting their roles onto cell proliferation, chemotaxis and vascular motility. Arachidonic acid and its metabolites were shown to be involved in processes like liver regeneration where growth factor receptors possessing tyrosine kinase activity are implicated. In this study we examined whether stimulation of the HGF/SF-receptor's tyrosine kinase activity would involve changes in the phosphorylation state and the activity of cPLA2 in MDCK cells, where HGF/SF is known to induce scattering responses rather than mitogenesis. The activated p145betaMET was shown to associate with and to phosphorylate cPLA2 on tyrosine residues, this leading to subsequent release of arachidonic acid. cPLA2 was also phosphorylated in serine residues and such a role has been so far assigned to the mitogen activated protein (MAP) kinase. Our data have also shown that MAP kinase is associated and phosphorylated on tyrosine by the activated p145betaMET. Immunodepletion of MAP kinase via electroporation of an anti-MAP kinase antibody, did not significantly decrease arachidonic acid release in HGF/SF-stimulated MDCK cells. It is therefore emerging that phosphorylation of cPLA2 on tyrosine by the HGF/SF receptor kinase is capable of triggering arachidonic acid release and that MAP kinase is contributing to full, but does not drive, the activity of cPLA2. The release of arachidonic acid by MDCK cells following HGF/SF stimulation is establishing this fatty acid and its metabolites as major components involved in the transduction of MET-driven signals and at the same time in the amplification of such signals.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.110.14.1655