BIMEL, an intrinsically disordered protein, is degraded by 20S proteasomes in the absence of poly-ubiquitylation

BIM-extra long (BIMEL), a pro-apoptotic BH3-only protein and part of the BCL-2 family, is degraded by the proteasome following activation of the ERK1/2 signalling pathway. Although studies have demonstrated poly-ubiquitylation of BIMEL in cells, the nature of the ubiquitin chain linkage has not been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2011-03, Vol.124 (6), p.969-977
Hauptverfasser: Wiggins, Ceri M, Tsvetkov, Peter, Johnson, Mark, Joyce, Claire L, Lamb, Christopher A, Bryant, Nia J, Komander, David, Shaul, Yosef, Cook, Simon J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BIM-extra long (BIMEL), a pro-apoptotic BH3-only protein and part of the BCL-2 family, is degraded by the proteasome following activation of the ERK1/2 signalling pathway. Although studies have demonstrated poly-ubiquitylation of BIMEL in cells, the nature of the ubiquitin chain linkage has not been defined. Using ubiquitin-binding domains (UBDs) specific for defined ubiquitin chain linkages, we show that BIMEL undergoes K48-linked poly-ubiquitylation at either of two lysine residues. Surprisingly, BIMELΔKK, which lacks both lysine residues, was not poly-ubiquitylated but still underwent ERK1/2-driven, proteasome-dependent turnover. BIM has been proposed to be an intrinsically disordered protein (IDP) and some IDPs can be degraded by uncapped 20S proteasomes in the absence of poly-ubiquitylation. We show that BIMEL is degraded by isolated 20S proteasomes but that this is prevented when BIMEL is bound to its pro-survival target protein MCL-1. Furthermore, knockdown of the proteasome cap component Rpn2 does not prevent BIMEL turnover in cells, and inhibition of the E3 ubiquitin ligase β-TrCP, which catalyses poly-Ub of BIMEL, causes Cdc25A accumulation but does not inhibit BIMEL turnover. These results provide new insights into the regulation of BIMEL by defining a novel ubiquitin-independent pathway for the proteasome-dependent destruction of this highly toxic protein.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.058438