Lasp-1 binds to non-muscle F-actin in vitro and is localized within multiple sites of dynamic actin assembly in vivo

Lasp-1 has been identified as a signaling molecule that is phosphorylated upon elevation of [cAMP]i in pancreas, intestine and gastric mucosa and is selectively expressed in cells within epithelial tissues. In the gastric parietal cell, cAMP-dependent phosphorylation induces the partial translocatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2002-12, Vol.115 (Pt 24), p.4787-4799
Hauptverfasser: Chew, Catherine S, Chen, Xunsheng, Parente, Jr, John A, Tarrer, Shannan, Okamoto, Curtis, Qin, Hai-Yen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lasp-1 has been identified as a signaling molecule that is phosphorylated upon elevation of [cAMP]i in pancreas, intestine and gastric mucosa and is selectively expressed in cells within epithelial tissues. In the gastric parietal cell, cAMP-dependent phosphorylation induces the partial translocation of lasp-1 to the apically directed F-actin-rich canalicular membrane, which is the site of active HCl secretion. Lasp-1 is an unusual modular protein that contains an N-terminal LIM domain, a C-terminal SH3 domain and two internal nebulin repeats. Domain-based analyses have recently categorized this protein as an epithelial representative of the nebulin family, which also includes the actin binding, muscle-specific proteins, nebulin, nebulette and N-RAP. In this study, we show that lasp-1 binds to non-muscle filamentous (F) actin in vitro in a phosphorylation-dependent manner. In addition, we provide evidence that lasp-1 is concentrated within focal complexes as well as in the leading edges of lamellipodia and the tips of filopodia in non-transformed gastric fibroblasts. In actin pull-down assays, the apparent K(d) of bacterially expressed his-tagged lasp-1 binding to F-actin was 2 micro M with a saturation stoichiometry of approximately 1:7. Phosphorylation of recombinant lasp-1 with recombinant PKA increased the K(d) and decreased the B(max) for lasp-1 binding to F-actin. Microsequencing and site-directed mutagenesis localized the major in vivo and in vitro PKA-dependent phosphorylation sites in rabbit lasp-1 to S(99) and S(146). BLAST searches confirmed that both sites are conserved in human and chicken homologues. Transfection of lasp-1 cDNA encoding for alanine substitutions at S(99) and S(146), into parietal cells appeared to suppress the cAMP-dependent translocation of lasp-1 to the intracellular canalicular region. In gastric fibroblasts, exposure to the protein kinase C activator, PMA, was correlated with the translocation of lasp-1 into newly formed F-actin-rich lamellipodial extensions and nascent focal complexes. Since lasp-1 does not appear to be phosphorylated by PKC, these data suggest that other mechanisms in addition to cAMP-dependent phosphorylation can mediate the translocation of lasp-1 to regions of dynamic actin turnover. The localization of lasp-1 to these subcellular regions under a range of experimental conditions and the phosphorylation-dependent regulation of this protein in F-actin rich epithelial cells suggests an integral and poss
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.00174