FROZEN PERCOLATION ON THE BINARY TREE IS NONENDOGENOUS

In frozen percolation, i.i.d. uniformly distributed activation times are assigned to the edges of a graph. At its assigned time an edge opens provided neither of its end vertices is part of an infinite open cluster; in the opposite case it freezes. Aldous (Math. Proc. Cambridge Philos. Soc. 128 (200...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2021-09, Vol.49 (5), p.2272-2316
Hauptverfasser: Ráth, Balázs, Swart, Jan M., Terpai, Tamás
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In frozen percolation, i.i.d. uniformly distributed activation times are assigned to the edges of a graph. At its assigned time an edge opens provided neither of its end vertices is part of an infinite open cluster; in the opposite case it freezes. Aldous (Math. Proc. Cambridge Philos. Soc. 128 (2000) 465–477) showed that such a process can be constructed on the infinite 3-regular tree and asked whether the event that a given edge freezes is a measurable function of the activation times assigned to all edges. We give a negative answer to this question, or, using an equivalent formulation and terminology introduced by Aldous and Bandyopadhyay (Ann. Appl. Probab. 15 (2005) 1047–1110), we show that the recursive tree process associated with frozen percolation on the oriented binary tree is nonendogenous. An essential role in our proofs is played by a frozen percolation process on a continuous-time binary Galton–Watson tree that has nice scale invariant properties.
ISSN:0091-1798
2168-894X
DOI:10.1214/21-AOP1507