SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH REGULARLY VARYING INCREMENTS
Let X be a Lévy process with regularly varying Lévy measure ν. We obtain sample-path large deviations for scaled processes X̄n (t) X ¯ n ( t ) ≜ X ( n t ) / n and obtain a similar result for random walks with regularly varying increments. Our results yield detailed asymptotic estimates in scenarios...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2019-11, Vol.47 (6), p.3551-3605 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3605 |
---|---|
container_issue | 6 |
container_start_page | 3551 |
container_title | The Annals of probability |
container_volume | 47 |
creator | Rhee, Chang-Han Blanchet, Jose Zwart, Bert |
description | Let X be a Lévy process with regularly varying Lévy measure ν. We obtain sample-path large deviations for scaled processes X̄n
(t)
X
¯
n
(
t
)
≜
X
(
n
t
)
/
n
and obtain a similar result for random walks with regularly varying increments. Our results yield detailed asymptotic estimates in scenarios where multiple big jumps in the increment are required to make a rare event happen; we illustrate this through detailed conditional limit theorems. In addition, we investigate connections with the classical large deviations framework. In that setting, we show that a weak large deviation principle (with logarithmic speed) holds, but a full large deviation principle does not hold. |
doi_str_mv | 10.1214/18-AOP1319 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1214_18_AOP1319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26867232</jstor_id><sourcerecordid>26867232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-343f5116c682be601f210612e88a7eb11e6baa3111cf8422f9209f4ec264cd2e3</originalsourceid><addsrcrecordid>eNo9kL1OwzAUhS0EEqWwsCN5Rgr43gTHHq3UTSOcHyVpS6coNY5EBSpKuvAIPBcvRlArlnOW7zvDIeQW2AMgBI8gPJUX4IM8IxMELjwhg5dzMmFMggehFJfkahh2jDEehsGE2EqlhdG0UPWCGlXGms70KlF1kmcVneclNT_fqw0tyjzSVaUrqrIZLcfIU7pW5rmi62RUSx0vR91s6EqVmySLaZJFpU51VlfX5KJr3wd3c-opWc51HS08k8dJpIxnUciD5wd-9wTALRe4dZxBh8A4oBOiDd0WwPFt2_oAYDsRIHYSmewCZ5EH9hWdPyX3x13b74ehd13z2b99tP1XA6z5u6cB0ZzuGeG7I7wbDvv-n0QueIg--r-o1Vk3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH REGULARLY VARYING INCREMENTS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>Rhee, Chang-Han ; Blanchet, Jose ; Zwart, Bert</creator><creatorcontrib>Rhee, Chang-Han ; Blanchet, Jose ; Zwart, Bert</creatorcontrib><description>Let X be a Lévy process with regularly varying Lévy measure ν. We obtain sample-path large deviations for scaled processes X̄n
(t)
X
¯
n
(
t
)
≜
X
(
n
t
)
/
n
and obtain a similar result for random walks with regularly varying increments. Our results yield detailed asymptotic estimates in scenarios where multiple big jumps in the increment are required to make a rare event happen; we illustrate this through detailed conditional limit theorems. In addition, we investigate connections with the classical large deviations framework. In that setting, we show that a weak large deviation principle (with logarithmic speed) holds, but a full large deviation principle does not hold.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/18-AOP1319</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><ispartof>The Annals of probability, 2019-11, Vol.47 (6), p.3551-3605</ispartof><rights>Institute of Mathematical Statistics, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-343f5116c682be601f210612e88a7eb11e6baa3111cf8422f9209f4ec264cd2e3</citedby><cites>FETCH-LOGICAL-c289t-343f5116c682be601f210612e88a7eb11e6baa3111cf8422f9209f4ec264cd2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26867232$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26867232$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Rhee, Chang-Han</creatorcontrib><creatorcontrib>Blanchet, Jose</creatorcontrib><creatorcontrib>Zwart, Bert</creatorcontrib><title>SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH REGULARLY VARYING INCREMENTS</title><title>The Annals of probability</title><description>Let X be a Lévy process with regularly varying Lévy measure ν. We obtain sample-path large deviations for scaled processes X̄n
(t)
X
¯
n
(
t
)
≜
X
(
n
t
)
/
n
and obtain a similar result for random walks with regularly varying increments. Our results yield detailed asymptotic estimates in scenarios where multiple big jumps in the increment are required to make a rare event happen; we illustrate this through detailed conditional limit theorems. In addition, we investigate connections with the classical large deviations framework. In that setting, we show that a weak large deviation principle (with logarithmic speed) holds, but a full large deviation principle does not hold.</description><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAUhS0EEqWwsCN5Rgr43gTHHq3UTSOcHyVpS6coNY5EBSpKuvAIPBcvRlArlnOW7zvDIeQW2AMgBI8gPJUX4IM8IxMELjwhg5dzMmFMggehFJfkahh2jDEehsGE2EqlhdG0UPWCGlXGms70KlF1kmcVneclNT_fqw0tyjzSVaUrqrIZLcfIU7pW5rmi62RUSx0vR91s6EqVmySLaZJFpU51VlfX5KJr3wd3c-opWc51HS08k8dJpIxnUciD5wd-9wTALRe4dZxBh8A4oBOiDd0WwPFt2_oAYDsRIHYSmewCZ5EH9hWdPyX3x13b74ehd13z2b99tP1XA6z5u6cB0ZzuGeG7I7wbDvv-n0QueIg--r-o1Vk3</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Rhee, Chang-Han</creator><creator>Blanchet, Jose</creator><creator>Zwart, Bert</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH REGULARLY VARYING INCREMENTS</title><author>Rhee, Chang-Han ; Blanchet, Jose ; Zwart, Bert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-343f5116c682be601f210612e88a7eb11e6baa3111cf8422f9209f4ec264cd2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhee, Chang-Han</creatorcontrib><creatorcontrib>Blanchet, Jose</creatorcontrib><creatorcontrib>Zwart, Bert</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhee, Chang-Han</au><au>Blanchet, Jose</au><au>Zwart, Bert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH REGULARLY VARYING INCREMENTS</atitle><jtitle>The Annals of probability</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>47</volume><issue>6</issue><spage>3551</spage><epage>3605</epage><pages>3551-3605</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>Let X be a Lévy process with regularly varying Lévy measure ν. We obtain sample-path large deviations for scaled processes X̄n
(t)
X
¯
n
(
t
)
≜
X
(
n
t
)
/
n
and obtain a similar result for random walks with regularly varying increments. Our results yield detailed asymptotic estimates in scenarios where multiple big jumps in the increment are required to make a rare event happen; we illustrate this through detailed conditional limit theorems. In addition, we investigate connections with the classical large deviations framework. In that setting, we show that a weak large deviation principle (with logarithmic speed) holds, but a full large deviation principle does not hold.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/18-AOP1319</doi><tpages>55</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2019-11, Vol.47 (6), p.3551-3605 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_crossref_primary_10_1214_18_AOP1319 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete |
title | SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH REGULARLY VARYING INCREMENTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAMPLE%20PATH%20LARGE%20DEVIATIONS%20FOR%20L%C3%89VY%20PROCESSES%20AND%20RANDOM%20WALKS%20WITH%20REGULARLY%20VARYING%20INCREMENTS&rft.jtitle=The%20Annals%20of%20probability&rft.au=Rhee,%20Chang-Han&rft.date=2019-11-01&rft.volume=47&rft.issue=6&rft.spage=3551&rft.epage=3605&rft.pages=3551-3605&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/18-AOP1319&rft_dat=%3Cjstor_cross%3E26867232%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26867232&rfr_iscdi=true |