SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH REGULARLY VARYING INCREMENTS

Let X be a Lévy process with regularly varying Lévy measure ν. We obtain sample-path large deviations for scaled processes X̄n (t) X ¯ n ( t ) ≜ X ( n t ) / n and obtain a similar result for random walks with regularly varying increments. Our results yield detailed asymptotic estimates in scenarios...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2019-11, Vol.47 (6), p.3551-3605
Hauptverfasser: Rhee, Chang-Han, Blanchet, Jose, Zwart, Bert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a Lévy process with regularly varying Lévy measure ν. We obtain sample-path large deviations for scaled processes X̄n (t) X ¯ n ( t ) ≜ X ( n t ) / n and obtain a similar result for random walks with regularly varying increments. Our results yield detailed asymptotic estimates in scenarios where multiple big jumps in the increment are required to make a rare event happen; we illustrate this through detailed conditional limit theorems. In addition, we investigate connections with the classical large deviations framework. In that setting, we show that a weak large deviation principle (with logarithmic speed) holds, but a full large deviation principle does not hold.
ISSN:0091-1798
2168-894X
DOI:10.1214/18-AOP1319