CENTRAL LIMIT THEOREMS FOR EMPIRICAL TRANSPORTATION COST IN GENERAL DIMENSION
We consider the problem of optimal transportation with quadratic cost between a empirical measure and a general target probability on ℝ d , with d ≥ 1. We provide new results on the uniqueness and stability of the associated optimal transportation potentials, namely, the minimizers in the dual formu...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2019-03, Vol.47 (2), p.926-951 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of optimal transportation with quadratic cost between a empirical measure and a general target probability on ℝ
d
, with d ≥ 1. We provide new results on the uniqueness and stability of the associated optimal transportation potentials, namely, the minimizers in the dual formulation of the optimal transportation problem. As a consequence, we show that a CLT holds for the empirical transportation cost under mild moment and smoothness requirements. The limiting distributions are Gaussian and admit a simple description in terms of the optimal transportation potentials. |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/18-AOP1275 |