CENTRAL LIMIT THEOREMS FOR EMPIRICAL TRANSPORTATION COST IN GENERAL DIMENSION

We consider the problem of optimal transportation with quadratic cost between a empirical measure and a general target probability on ℝ d , with d ≥ 1. We provide new results on the uniqueness and stability of the associated optimal transportation potentials, namely, the minimizers in the dual formu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2019-03, Vol.47 (2), p.926-951
Hauptverfasser: del Barrio, Eustasio, Loubes, Jean-Michel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of optimal transportation with quadratic cost between a empirical measure and a general target probability on ℝ d , with d ≥ 1. We provide new results on the uniqueness and stability of the associated optimal transportation potentials, namely, the minimizers in the dual formulation of the optimal transportation problem. As a consequence, we show that a CLT holds for the empirical transportation cost under mild moment and smoothness requirements. The limiting distributions are Gaussian and admit a simple description in terms of the optimal transportation potentials.
ISSN:0091-1798
2168-894X
DOI:10.1214/18-AOP1275