The Effects of Colloid Solutions on Renal Proximal Tubular Cells In Vitro

Renal failure is a common complication of critically ill patients. Colloids such as hydroxyethyl starch (HES), gelatin, or albumin are regularly used for intravascular volume resuscitation, but there are increasing reports about the nephrotoxic side effects of synthetic colloids in septic patients....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anesthesia and analgesia 2012-02, Vol.114 (2), p.371-374
Hauptverfasser: Neuhaus, Winfried, Schick, Martin A., Bruno, Raphael R., Schneiker, Bianca, Förster, Carola Y., Roewer, Norbert, Wunder, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Renal failure is a common complication of critically ill patients. Colloids such as hydroxyethyl starch (HES), gelatin, or albumin are regularly used for intravascular volume resuscitation, but there are increasing reports about the nephrotoxic side effects of synthetic colloids in septic patients. Therefore, we investigated the influence of colloids (HES130/0.4 (Voluven®), gelatin (Gelafundin®), human albumin, and the crystalloid Sterofundin® ISO on cell viability of human proximal tubular (HK-2) cells. HK-2 cells were incubated with colloids (0.1%–4%) and with equivalent volumes of the crystalloid solution Sterofundin ISO. After 21 hours, cell viability of HK-2 cells was measured by EZ4U assay (dye XTT). Application of HES130/0.4 decreased cell viability significantly in a concentration-dependent manner (86.80% ± 10.79% by 0.5% HES down to 24.02% ± 4.27% by 4% HES). Human albumin (>1.25%) as well as gelatin (>1%) also showed deleterious effects on HK-2 cells. Interestingly, in lower concentrations, human albumin and the crystalloid solution Sterofundin ISO were cytoprotective in comparison with the NaCl control. In conclusion, synthetic and natural colloids showed a harmful impact on HK-2 cells in higher concentrations without any prior proinflammatory stimulus. HES130/0.4 exhibited the most distinctive harmful impact, whereas the application of crystalloid Sterofundin ISO revealed cytoprotective effects.
ISSN:0003-2999
1526-7598
DOI:10.1213/ANE.0b013e3182367a54