Hypothalamo-Pituitary-Adrenal Axis Dysfunction in Chronic Fatigue Syndrome, and the Effects of Low-Dose Hydrocortisone Therapy

These neuroendocrine studies were part of a series of studies testing the hypotheses that 1) there may be reduced activity of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome and 2) low-dose augmentation with hydrocortisone therapy would improve the core symptoms. We measured ACTH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of clinical endocrinology and metabolism 2001-08, Vol.86 (8), p.3545-3554
Hauptverfasser: Cleare, A. J., Miell, J., Heap, E., Sookdeo, S., Young, L., Malhi, G. S., O’Keane, V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:These neuroendocrine studies were part of a series of studies testing the hypotheses that 1) there may be reduced activity of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome and 2) low-dose augmentation with hydrocortisone therapy would improve the core symptoms. We measured ACTH and cortisol responses to human CRH, the insulin stress test, and d-fenfluramine in 37 medication-free patients with CDC-defined chronic fatigue syndrome but no comorbid psychiatric disorders and 28 healthy controls. We also measured 24-h urinary free cortisol in both groups. All patients (n = 37) had a pituitary challenge test (human CRH) and a hypothalamic challenge test [either the insulin stress test (n = 16) or d-fenfluramine (n = 21)]. Baseline cortisol concentrations were significantly raised in the chronic fatigue syndrome group for the human CRH test only. Baseline ACTH concentrations did not differ between groups for any test. ACTH responses to human CRH, the insulin stress test, and d- fenfluramine were similar for patient and control groups. Cortisol responses to the insulin stress test did not differ between groups, but there was a trend for cortisol responses both to human CRH and d-fenfluramine to be lower in the chronic fatigue syndrome group. These differences were significant when ACTH responses were controlled. Urinary free cortisol levels were lower in the chronic fatigue syndrome group compared with the healthy group. These results indicate that ACTH responses to pituitary and hypothalamic challenges are intact in chronic fatigue syndrome and do not support previous findings of reduced central responses in hypothalamic-pituitary-adrenal axis function or the hypothesis of abnormal CRH secretion in chronic fatigue syndrome. These data further suggest that the hypocortisolism found in chronic fatigue syndrome may be secondary to reduced adrenal gland output. Thirty-two patients were treated with a low-dose hydrocortisone regime in a double-blind, placebo-controlled cross-over design, with 28 days on each treatment. They underwent repeated 24-h urinary free cortisol collections, a human CRH test, and an insulin stress test after both active and placebo arms of treatment. Looking at all subjects, 24-h urinary free cortisol was higher after active compared with placebo treatments, but 0900-h cortisol levels and the ACTH and cortisol responses to human CRH and the insulin stress test did not differ. However, a differential effect was seen in those
ISSN:0021-972X
1945-7197
DOI:10.1210/jcem.86.8.7735