Robust quantum transport at particle-hole symmetry
We study quantum transport in disordered systems with particle-hole symmetric Hamiltonians. The particle-hole symmetry is spontaneously broken after averaging with respect to disorder, and the resulting massless mode is treated in a random-phase representation of the invariant measure of the symmetr...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2021-07, Vol.135 (1), p.17001 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study quantum transport in disordered systems with particle-hole symmetric Hamiltonians. The particle-hole symmetry is spontaneously broken after averaging with respect to disorder, and the resulting massless mode is treated in a random-phase representation of the invariant measure of the symmetry group. We compute the resulting fermionic functional integral of the average two-particle Green's function in a perturbation theory around the diffusive limit. The results up to two-loop order show that the corrections vanish, indicating that the diffusive quantum transport is robust. On the other hand, the diffusion coefficient depends strongly on the particle-hole symmetric Hamiltonian we choose to study. This reveals a connection between the underlying microscopic theory and the classical long-scale metallic behaviour of these systems. |
---|---|
ISSN: | 0295-5075 1286-4854 1286-4854 |
DOI: | 10.1209/0295-5075/ac1a25 |