Transient growth induces unexpected deterministic spatial patterns in the Turing process

Turing models are often invoked to explain spatial pattern formation in a number of physical, chemical and biological processes. Pattern occurrence is generally investigated through a classical eigenvalue analysis, which evaluates the asymptotic stability of the homogeneous state of the system. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2011-07, Vol.95 (1), p.18003
Hauptverfasser: Ridolfi, L, Camporeale, C, D'Odorico, P, Laio, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Turing models are often invoked to explain spatial pattern formation in a number of physical, chemical and biological processes. Pattern occurrence is generally investigated through a classical eigenvalue analysis, which evaluates the asymptotic stability of the homogeneous state of the system. Here we show that deterministic patterns may emerge in a Turing model even when the homogeneous state is stable. In fact, the non-normality of the eigenvectors is able to generate transient (long-lasting) patterns even in the region of the parameter space where the dynamical system is asymptotically stable (i.e., the eigenvalues are negative). Moreover, non-normality–induced patterns usually display an interesting multiscale structure that can be investigated analytically.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/95/18003