Transient growth induces unexpected deterministic spatial patterns in the Turing process
Turing models are often invoked to explain spatial pattern formation in a number of physical, chemical and biological processes. Pattern occurrence is generally investigated through a classical eigenvalue analysis, which evaluates the asymptotic stability of the homogeneous state of the system. Here...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2011-07, Vol.95 (1), p.18003 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Turing models are often invoked to explain spatial pattern formation in a number of physical, chemical and biological processes. Pattern occurrence is generally investigated through a classical eigenvalue analysis, which evaluates the asymptotic stability of the homogeneous state of the system. Here we show that deterministic patterns may emerge in a Turing model even when the homogeneous state is stable. In fact, the non-normality of the eigenvectors is able to generate transient (long-lasting) patterns even in the region of the parameter space where the dynamical system is asymptotically stable (i.e., the eigenvalues are negative). Moreover, non-normality–induced patterns usually display an interesting multiscale structure that can be investigated analytically. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/95/18003 |