High-temperature ferromagnetism of Li-doped vanadium oxide nanotubes
The nature of a puzzling high-temperature ferromagnetism of doped mixed-valent vanadium oxide nanotubes reported earlier by Krusin-Elbaum et al., Nature, 431 (2004) 672, has been addressed by static magnetization, muon spin relaxation, nuclear magnetic and electron spin resonance spectroscopy techni...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2009-12, Vol.88 (5), p.57002 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The nature of a puzzling high-temperature ferromagnetism of doped mixed-valent vanadium oxide nanotubes reported earlier by Krusin-Elbaum et al., Nature, 431 (2004) 672, has been addressed by static magnetization, muon spin relaxation, nuclear magnetic and electron spin resonance spectroscopy techniques. A precise control of the charge doping was achieved by electrochemical Li intercalation. We find that it provides excess electrons, thereby increasing the number of interacting magnetic vanadium sites, and, at a certain doping level, yields a ferromagnetic-like response persisting up to room temperature. Thus we confirm the surprising previous results on the samples prepared by a completely different intercalation method. Moreover our spectroscopic data provide first ample evidence for the bulk nature of the effect. In particular, they enable a conclusion that the Li nucleates superparamagnetic nanosize spin clusters around the intercalation site which are responsible for the unusual high-temperature ferromagnetism of vanadium oxide nanotubes. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/88/57002 |