Accelerated expansion in bosonic and fermionic 2D cosmologies with quantum effects

In this work we analyze the effects produced by bosonic and fermionic constituents, including quantum corrections, in two-dimensional (2D) cosmological models. We focus on a gravitational theory related to the Callan-Giddings-Harvey-Strominger model, to simulate the dynamics of a young, spatially li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2009-07, Vol.87 (1), p.10001
Hauptverfasser: Samojeden, L. L, Kremer, G. M, Devecchi, F. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we analyze the effects produced by bosonic and fermionic constituents, including quantum corrections, in two-dimensional (2D) cosmological models. We focus on a gravitational theory related to the Callan-Giddings-Harvey-Strominger model, to simulate the dynamics of a young, spatially lineal, universe. The cosmic substratum is formed by an inflaton field plus a matter component, sources of the 2D gravitational field; the degrees of freedom also include the presence of a dilaton field. We show that this combination permits, among other scenarios, the simulation of a period of inflation, that would be followed by a (bosonic/fermionic)-matter-dominated era. We also analyse how quantum effects contribute to the destiny of the expansion, given the fact that in 2D we have a consistent (renormalizable) quantum theory of gravity. The dynamical behavior of the system follows from the solution of the gravitational-field equations, the (Klein-Gordon and Dirac) equations for the sources and the dilaton-field equation. Consistent (accelerated) regimes are present among the solutions of the 2D equations; the results depend strongly on the initial conditions used for the dilaton field. In the particular case where fermions are included as matter fields a transition to a decelerated expansion is possible, something that does not happen in the exclusively bosonic case.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/87/10001