1-D random landscapes and non-random data series

We study the simplest random landscape, the curve formed by joining consecutive data points $f_{1},\ldots,f_{N+1}$ with line segments, where the fi are i.i.d. random numbers and $f_{i}\ne f_{j}$. We label each segment increasing (+) or decreasing (-) and call this string of +'s and -'s the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2007-08, Vol.79 (3), p.38006
Hauptverfasser: Fink, T. M. A, Willbrand, K, Brown, F. C. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the simplest random landscape, the curve formed by joining consecutive data points $f_{1},\ldots,f_{N+1}$ with line segments, where the fi are i.i.d. random numbers and $f_{i}\ne f_{j}$. We label each segment increasing (+) or decreasing (-) and call this string of +'s and -'s the up-down signature $\sigma $. We calculate the probability $P(\sigma (f))$ for a random curve and use it to bound the algorithmic information content of f. We show that f can be compressed by $k = \log_2 {1/P(\sigma)} - N $ bits, where k is a universal currency for comparing the amount of pattern in different curves. By applying our results to microarray time series data, we blindly identify regulatory genes.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/79/38006