1-D random landscapes and non-random data series
We study the simplest random landscape, the curve formed by joining consecutive data points $f_{1},\ldots,f_{N+1}$ with line segments, where the fi are i.i.d. random numbers and $f_{i}\ne f_{j}$. We label each segment increasing (+) or decreasing (-) and call this string of +'s and -'s the...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2007-08, Vol.79 (3), p.38006 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the simplest random landscape, the curve formed by joining consecutive data points $f_{1},\ldots,f_{N+1}$ with line segments, where the fi are i.i.d. random numbers and $f_{i}\ne f_{j}$. We label each segment increasing (+) or decreasing (-) and call this string of +'s and -'s the up-down signature $\sigma $. We calculate the probability $P(\sigma (f))$ for a random curve and use it to bound the algorithmic information content of f. We show that f can be compressed by $k = \log_2 {1/P(\sigma)} - N $ bits, where k is a universal currency for comparing the amount of pattern in different curves. By applying our results to microarray time series data, we blindly identify regulatory genes. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/79/38006 |